Propositional Logic

Propositional Logic :

The propositional logic represents logic through propositions and logical connectives.


Proposition :

A Proposition is an elementary atomic sentence that can have either true or false as its value.
They are also known as sentences or statements.
example:    Wind is blowing.       ( It is a proposition as it may be either true or false )
                      It is raining.                 ( It is a proposition as it may be either true or false )
                      How are you?              ( It is NOT a proposition as it can not be true or false )    


Simple Proposition:
It is a single sentence that does not have any part with it. 
example:
                    It is raining.
                    Wind is blowing.


Compound Proposition:
These are formed by two or more propositions joined with operators known as Connectives ( AND , OR, ).
example:
                    It is raining and wind is blowing.
                    If you work hard then you will succeed.


Sentential Connectives:
They are the operators which join sentences or propositions to form compound propositions.

Following are the Sentential Connectives :

1) Disjunction (known as OR):    It is represented by symbol "+" or "∨".
    It means either one of the two arguments is true or both of them are true, it will be true.
    example:
               + Q ( or PQ), means P OR Q :    It is true if either P is true, or Q is true, or both are true.
                        

P

Q

PQ

false

false

false

false

true

true

true

false

true

true

true

true


2) Conjunction (known as AND):    It is represented by symbol "." or "".
    It means if both arguments are true, it will be true.    
    example:
                P.Q ( or PQ), means P AND Q :    It is true if both P and Q are true.

P

Q

PQ

false

false

false

false

true

false

true

false

false

true

true

true


3) Conditional (known as If.. Then): It is also known as Implication. It is represented by symbol "".
     It means if one argument is true then other must be true to get true, Rest cases are true.
     example:
               Q ( or if P then Q ) :    It means if P is true then Q must be true.

P

Q

PQ

false

false

true

false

true

true

true

false

false

true

true

true


4) Bi-conditional (known as If and only If): It is also known as Equivalence. It is represented by
     symbol "". It means either both arguments are true or both are false it will result in true.
    example:
               Q ( or Q ) :    It is true if both P and Q are either true or false.

P

Q

PQ

false

false

true

false

true

false

true

false

false

true

true

true


*** Negation (known as NOT): It is not a connective but only an operator. It is represented by
     symbols "¬, ˜, ', -". It does not join statements but actually works on a single proposition.
     It changes the state of any proposition from true to false & vice versa.
    example:
               ˜or  NOT P ) :    It is true if P is false.

P

˜P

false

true

true

false


WFF ( Well Formed Formulae ):
Propositions are also referred by the name Well Formed Formulae (WFF).

Truth Value:
Truth Value of a statement is its truth or falsity. All simple and compound statements (Propositions) have truth values, whether asserted or negated.
example:
                P is either true or false.
               ˜P is either true or false.
                P+Q  is either true or false.
                P.Q  is either true or false.


*** Inverse, Converse & Contrapositive ***

    Conditional statement IF... Then (P Q) has two parts
        a)  P (antecedent ) known as "Hypothesis"
        b) Q (consequent ) known as "Conclusion"

    Inverse: Inverse of a conditional statement is done by Negating both its hypothesis & conclusion. If
            the statement is "If P, then Q", its inverse is "If Not P, then Not Q".
            Inverse of   PQ  is ˜P˜Q
    Converse: Converse of a conditional statement is done by interchanging both hypothesis & 
            conclusion. If statement is "If P, then Q", its converse is "If Q, then P".
            Converse  of   PQ  is   QP
    Contra-positive: Contra-positive of a conditional statement is done by interchanging the Negation
            of both hypothesis & conclusion. If statement is "If P, then Q", its contra-positive is "If Not Q,                then Not P".
            Contra-positive of   PQ   is    ˜Q˜P

Argument:    An argument contains two declarative sentences (Propositions) known as premises, along with a declarative sentence (Proposition) known as conclusion.

Premise:    A premise is a statement (Proposition) in an argument which provides reason for conclusion.

Conclusion:    A conclusion is a statement (Proposition) in an argument which provides logical result of relationship between premises.

Syllogism:    It is a form of logical argument that applies deductive reasoning to draw a conclusion based on two premises (Propositions) which are assumed to be true.
example:
                All humans will die.    (Premise 1)
                Raju is a human.          (Premise 2)
        therefore,
                Raju will die.               (Conclusion)

**************************************************************************

Some Questions on Propositional Logic

Question 1) Prove that (x ⇒ y) ∧ (y ⇒ x) = xy

Solution (Algebra Method):    
                        L.H.S.   = (x ⇒ y) ∧ (y ⇒ x)
                                    = (x'+y).(y'+x)                (replacing with boolean expression)
                                    = x'.y'+x'.x+y.y'+y.x 
                                    = x'.y'+0+0+y.x                (complementarity law)
                                    = x'.y'+y.x                            ( property of 0)

                        R.H.S.  = xy
                                    = x'.y'+y.x                            (replacing with boolean expression)

        here, we can see that L.H.S. = R.H.S.
        hence proved.

Solution (Truth Table): 
   

x

y

xy

yx

(xy) ( yx)

x y

0

0

1

1

1

1

0

1

1

0

0

0

1

0

0

1

0

0

1

1

1

1

1

1


        from above truth table we can easily see that (x ⇒ y) ∧ (y ⇒ x) = xy.
        hence proved.


Question 2) Find the converse, inverse & contra-positive of P ⇒ Q, if,
                       P:    It is raining.
                       Q:   It is cloudy.

Solution:
                           Inverse ( ˜P˜Q )                  :    If it is not raining then it is not cloudy.
                    Converse ( QP )                     :    If it is cloudy then it is raining.
                    Contra-positive ( ˜Q˜P )    :    If it is not cloudy then it is not raining.



1 comment: