Laws of Boolean Algebra

Laws of Boolean Algebra:

There are various Laws of Boolean Algebra, but we have only covered according to I.S.C. XII Syllabus.

Following are the laws which we will cover:

1

Property of "0"

A + 0 = A
    A . 0 = 0

2

Property of "1"

A + 1 = 1
    A . 1 = A

3

Idempotence Law

A + A = A
    A . A = A

4

Involution Law

(A')' = A

5

Complementarity Law

A + A' = 1
    A . A' = 0

6

Commutative Law

A + B = B + A
    A . B = B . A

7

Associative Law

( A + B ) + C = A + ( B + C )
    ( A . B ) . C = A . ( B . C )

8

De-Morgan's Law

( A + B )' = A' . B'
    ( A . B )' = A+ B'

9

Distributive Law

( B + C ) = A.B + A.C
    A + ( B.C ) = ( A+B ). ( A+C )

10

Absorption Law

A + A.B = A
    A . ( A + B ) = A

11

Redundancy Law

A + A'. B = A + B
    A . ( A' + B ) = A + B

Let us discuss them one by one.

1)    Property of "0":

    This law states that if we perform AND/ OR of any input with 0 then the result will be as follows:

                1)    A + 0 = A
                2)    A . 0 = 0

    This can be expressed using following truth tables.

       1) A + 0 = A 

A

“0”

A+0

0

0

0

1

0

1

       

    2) A . 0 = 0 

A

“0”

A.0

0

0

0

1

0

0


2)    Property of "1":

    This law states that if we perform AND/ OR of any input with 0 then the result will be as follows:

                1)    A + 1 = 1
                2)    A . 1 = A

    This can be expressed using following truth tables.

       1) A + 1 = 1

A

“1”

A+1

0

1

1

1

1

1

       

    2) A . 1 = A 

A

“1”

A.0

0

1

0

1

1

1


3)    Idempotence Law:

        This law states that OR/ AND of a variable with itself is always equal to the variable.

            1)    A + A = A

            2)    A . A = A

The same can be expressed using following truth table:

A

A

A + A

A . A

0

0

0

0

1

1

1

1


4)    Involution Law:

        This law states that double complement of a variable is always equals to that variable.

                (A')' = A

    This can be understood by following truth table:

A

A

(A)

0

1

0

1

0

1


5)    Complemetarity Law:

        Complementarity Law states 2 rules:

        Rule 1:    "OR" of a variable with its complement is always equal to 1

                        A + A' = 1

A

A’

A + A’

0

1

1

1

0

1

        Rule 2:    "AND" of a variable with its complement is always equal to 0

                        . A' = 0

A

A’

A . A’

0

1

0

1

0

0


6)    Commutative Law:

This law states that the order of the variables connected using OR/ AND makes no

difference

                1)    A+B = B+A

                2)    A.B = B.A

    Below Truth Tables prove the above laws: 
 
    1)    A+B = B+A   

A

B

A + B

B + A

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

    

    2)    A.B = B.A

A

B

A . B

B . A

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1



7)    Associative Law :

This law states that when more than two variables are connected using ORAND, the result is the same regardless of the grouping of the variables.

            1)    A + (B + C) = (A + B) + C
            2)    . ( B.C ) = ( A.B ).C

Below Truth Table illustrates these laws as applied to 3-input OR gates.

            1)    A + (B + C) = (A + B) + C

 

(1)

 

(2)

A

B

C

B+C

A+(B+C)

A+B

(A+B)+C

0

0

0

0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

1

1

1

0

1

1

1

1

1

1

1

0

0

0

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

        You can easily see that Col (1) & Col (2) have same values, thus verifying the Law.

            

            2)    . ( B.C ) = ( A.B ).C

 

(1)

 

(2)

A

B

C

B.C

A.(B.C)

A.B

(A.B).C

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

1

1

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

1

0

0

0

1

0

1

1

1

1

1

1

1

    here also Col (1) & Col (2) have same values, thus verifying the Law.


8)    De-Morgan's Law :

De-Morgan proposed two theorems.

            1)    (A + B)' = A' . B'

The complement of "OR" of two or more variables is equivalent to the "AND" of the complements of the individual variables.


            2)    (A B)' = A' + B'

The complement of "AND" of two or more variables is equivalent to the OR of the complements of the individual variables.

    The same can be understand by following truth tables:

        1)    (A + B)' = A' . B'

1

2

A

B

A'

B'

A.B

(A.B)'

A' + B'

0

0

1

1

0

1

1

0

1

1

0

0

1

1

1

0

0

1

0

1

1

1

1

0

0

1

0

0


           2)    (A B)' = A' + B'

1

2

A

B

A'

B'

A+B

(A+B)'

A' . B'

0

0

1

1

0

1

1

0

1

1

0

1

0

0

1

0

0

1

1

0

0

1

1

0

0

1

0

0

            In both the tables you can see that col. 1 = col. 2, hence proving the laws.


9)    Distributive Law:

This law states that for any given 3 or more variables, following relation establishes:

                1)    A(B + C) = AB + AC

                2)    A + B.C = (A+B).(A+C)

Let us prove both the laws by using a truth tables;

1)    A(B + C) = AB + AC

 

(1)

 

(2)

A

B

C

B+C

A.(B+C)

A.B

A.C

AB + AC

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

1

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

1

1

0

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

here col. 1 is equals to col.2, hence proving the law


2)    A + B.C = (A+B).(A+C)

 

(1)

 

(2)

A

B

C

B.C

A+ B.C

A+B

A+C

(A+B). (A+C)

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

here also col. 1 is equals to col.2, thus verifying the Law.


10)    Absorption Law:

            This law states following 2 rules:

                1)    A + A . B = A
            
                This rule can be proved by applying the Distributive law & Property of 1 as follows:

                    A + AB 
                    = A( 1 + B)                   Factoring (distributive law)
                    = A . 1                                         (Property of 1)
                    = A                                             (Property of 1)

            The same can be seen in the Truth Table below :

A

B

A.B

A+( A.B)

0

0

0

0

0

1

0

0

1

0

0

1

1

1

1

1

                
                
                2)    A. ( A+B ) = A
                        
                This rule can be proved by applying the Distributive, Idempotence law Property of 1 as follows:

                    . (A+B)
                    = A A + A . B          (distributive law)
                    = A + A . B                                 (Idempotence law : A.A = A)
                    = A( 1 + B)                                Factoring (distributive law)
                    = A . l                                         (Property of 1)
                    = A                                             (Property of 1)

            The same can be seen in the Truth Table below :

A

B

A+B

A.(A+B)

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

1


11)    Redundancy Law :

             This law states following 2 rules:

            1)    A+A'.B = A+B

            This rule can be proved as follows:

                    A + A'.B
                    = (A + A'. (A+B)                
                    = (1) . (A+B)                                 (Complementarity Law)                                                             = A + B                                         ( Property of 1) 
            
The same can be seen in the Truth Table below :

A

B

A

A’. B

A+ B

A(A’. B)

0

0

1

0

0

0

0

1

1

1

1

1

1

0

0

0

1

1

1

1

0

0

1

1



            2)    A.(A'+B) = A . B

            This rule can be proved as follows:

                    A.(A'+B)
                    = A A' + A B                        (Distributive Law)
                    = 0 + B                               (Complementarity Law)

            The same can be seen in the Truth Table below :

A

B

A

A’+ B

A.B

A(A’+ B)

0

0

1

1

0

0

0

1

1

1

0

0

1

0

0

0

0

0

1

1

0

1

1

1



No comments:

Post a Comment